
decoded.avast.io

VB6 P-Code Obfuscation - Avast Threat
Labs

by David Zimmer

7-8 minutes

Code obfuscation is one of the cornerstones of malware. The harder

code is to analyze the longer attackers can fly below the radar and

hide the full capabilities of their creations.

Code obfuscation techniques are very old and take many many

forms from source code modifications, opcode manipulations,

packer layers, virtual machines and more.

Obfuscations are common amongst native code, script languages,

.NET IL, and Java byte code.

As a defender, it’s important to be able to recognize these types of

tricks, and have tools that are capable of dealing with them.

Understanding the capabilities of the medium is paramount to

determine what is junk, what is code, and what may simply be a tool

error in data display.

On the attackers side, in order to develop a code obfuscation there

are certain prerequisites required. The attacker needs tooling and

documentation that allows them to craft and debug the complex

code flow.

For binary implementations such as native code or IL, this

would involve specs of the target file format, documentation on the

opcode instruction set, disassemblers, assemblers, and a capable

VB6 P-Code Obfuscation - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-obfus...

1 of 8 4/28/2021, 7:59 AM

debugger.

One of the code formats that has not seen common obfuscation has

been the Visual Basic 6 P-Code byte streams. This is a

proprietary opcode set, in a complex file format, with limited tooling

available to work with it.

In the course of exploring this instruction set certain questions arose:

Can VB6 P-Code be obsfuscated at the byte stream layer?

Has this occurred in samples in the wild?

What would this look like?

Do we have tooling capable of handling it?

Background

Before we continue, we will briefly discuss the VB6 P-Code format

and the tools available for working with it.

VB6 P-Code is a proprietary, variable length, binary instruction set

that is interpreted by the VB6 Virtual Machine (msvbvm60.dll).

In terms of documentation, Microsoft has never published details of

the VB6 file format or opcode instruction set. The opcode handler

names were gathered by reversers from the debug symbols leaked

with only a handful of runtimes.

At one time there was a reversing community, vb-

decompiler.theautomaters.com, which was dedicated to the VB6 file

format and P-Code instruction set. Mirrors of this message board are

still available today [1].

On the topic of tooling the main disassemblers are p32Disasm, VB-

Decompiler, Semi-Vbdecompiler and the WKTVBDE P-Code

debugger.

VB6 P-Code Obfuscation - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-obfus...

2 of 8 4/28/2021, 7:59 AM

Of these only Semi-Vbdecompiler shows you the full argument byte

stream, the rest display only the opcode byte. While several private

P-Code debuggers exist, WKTVBDE is the only public tool with

debugging capabilities at the P-Code level.

In terms of opcode meanings. This is still widely undocumented at

this point. Beyond intuition from their names you would really have

to compile your own programs from source, disassemble them,

disassemble the opcode handlers and debug both the native

runtime and P-Code to get a firm grasp of whats going on.

As you can glimpse, there is a great deal of information required to

make sense of P-Code disassembly and it is still a pretty dark art for

most reversers.

Do VB6 obfuscators exist?

While doing research for this series of blog posts we started with an

initial sample set of 25,000 P-Code binaries which we analyzed

using various metrics.

Common tricks VB6 malware uses to obfuscate their intent include:

junk code insertion at source level

inclusion of large bodies of open source code to bulk up binary

randomized internal object and method names

mostly commonly done at pre-compilation stage

some tools work post compilation.

all manner of encoded strings and data hiding

native code blobs launched with various tricks such as

CallWindowProc

To date, we have not yet documented P-Code level manipulations in

the wild.

VB6 P-Code Obfuscation - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-obfus...

3 of 8 4/28/2021, 7:59 AM

Due to the complexity of the vector, P-Code obsfuscations could

have easily gone undetected to date which made it an interesting

area to research. Hunting for samples will continue.

Can VB P-Code even be obfuscated and what would that look

like?

In the course of research, this was a natural question to arise. We

also wanted to make sure we had tooling which could handle it.

Consider the following VB6 source:

The default P-Code compilation is as follows:

VB6 P-Code Obfuscation - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-obfus...

4 of 8 4/28/2021, 7:59 AM

 An obsfuscated sample may look like the following:

From the above we see multiple opcode obfuscation tricks

commonly seen in native code.

It has been verified that this code runs fine and does not cause any

problems with the runtime. This mutated file has been made

available on Virustotal in order for vendors to test the

capabilities of their tooling [2].

To single out some of the tricks:

Jump over junk:

VB6 P-Code Obfuscation - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-obfus...

5 of 8 4/28/2021, 7:59 AM

 Jumping into argument bytes:

At runtime what executes is:

Do nothing sequences:

 Invalid sequences which may trigger fatal errors in disassembly

tools:

VB6 P-Code Obfuscation - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-obfus...

6 of 8 4/28/2021, 7:59 AM

Detection

The easiest markers of P-Code obfuscation are:

 jumps into the middle of other instructions

 unmatched for/next opcodes counts

 invalid/undefined opcodes

 unnatural opcode sequences not produced by the compiler

 errors in argument resolution from randomized data

Some junk sequences such as Not Not can show up normally

depending on how a routine was coded.

This level of detection will require a competent, error-free,

disassembly engine that is aware of the full structures within the VB6

file format.

Conclusion

Code obfuscation is a fact of life for malware analysts. The more

common and well documented the file format, the more likely that

obfuscation tools are wide spread in the wild.

This reasoning is likely why complex formats such as .NET and

Java had many public obfuscators early on.

This research proves that VB6 P-Code obfuscation is equally

possible and gives us the opportunity to make sure our tools are

capable of handling it before being required in a time constrained

incident response.

The techniques explored here also grant us the insight to hunt for

VB6 P-Code Obfuscation - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-obfus...

7 of 8 4/28/2021, 7:59 AM

advanced threats which may have been already using this

technique and had flown under the radar for years.

We encourage researchers to examine the mutated sample [2] and

make sure that their frameworks can handle it without error.

References

[1] vb-decompiler.theautomaters.com mirror

http://sandsprite.com/vb-reversing/vb-decompiler/

[2] Mutated P-Code sample SHA256 and VirusTotal link

a109303d938c0dc6caa8cd8202e93dc73a7ca0ea6d4f3143d0e851cd39811261

VB6 P-Code Obfuscation - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/vb6-p-code-obfus...

8 of 8 4/28/2021, 7:59 AM

